

Development of pilot-scale high-performance bioprogrammable RO membranes for water reclamatio

Prof. Rong WANG

SMTC/NEWRI, NTU 19 April 2022 @ SIWW [2.3 Advances in membrane technolo

d applications]

Growth of Desalination/Water Reuse and Membrane Technology

- There has been tremendous growth in the construction of desalination plants for sustainable water supply.
- Seawater reverse osmosis (SWRO) is dominant in the market due to its better energetics and lower footprint.
- Desalinated water can meet up to **25%** of Singapore's current water demand.

 Brackish water reverse osmosis (BWRO) membranes are widely used to remove salts and small molecules present in water.

NEWat

reclaimed wa

NFWater is n

High-grade

- NEWater is produced from treated used water that is further purified using BWRO membrane and UV disinfection.
- NEWater meets up to 40% of the nation's water needs.

Various Pressure-Driven Membrane Processes

State-of-the-art technology for water reuse and seawater desalination

- Thin film composite RO membrane

to assure stable operation with high separation performance

Challenges for RO Membranes

Efficiency

Water permeability of RO membranes is relatively low thus requiring more membranes or more energy to achieve a certain treatment capacity.

Energy

RO Membranes have a dense selective layer to reject salts, thus requiring substantial hydraulic pressure to push water through the membrane and overcome the osmotic pressure of the salts.

• Cost

Membrane systems are costly because they operate under high operating pressures resulting in the need for high pressure equipment and components

Maintenance

Membrane fouling issue is more severe for complex spiral wound modules under high operating pressure.

Vo. of patents

of patents

Ň

Aquaporin/Synthetic Channel-based Biomimetic Membrane Projects

No.	Project Reference No.	Project Title	Start Date	End Date	Extension Date
1	0804-IRIS-02	Aquaporin Based Biomimetic Membranes for Water Reuse and Desalination	15-Jun-09	14-Jun-12	14-Feb-13
2	PUB project	Performance Validation and Enhancement of Aquaporin- based Biomimetic Membranes for Water Reuse and Desalination	1-Aug-13	31-Jul-14	31-Oct-14
3	1301-IRIS-44	Robust and High Performance Aquaporin-Based Biomimetic Membranes for Water Reuse, Desalination and Energy Recovery	1-Sep-14	31-Aug-17	28-Feb-18
4	EWI -NRF	Synthetic Channel-Based Biomimetic Membranes for Desalination	1-May-16	30-April -19	3-April -21
5	IAF-PP	Scale-up the Fabrication of High Performance Aquaporin (AQP)-based Biomimetic Hollow Fiber Membranes for Water Reuse and Desalination	1-Apr-18	31-Mar-23	-
6	CRP-Water	Scale-up the Fabrication of High Performance Aquaporin (AQP)-based Biomimetic Flat-Sheet Membranes for Seawater Desalination	1-Apr-19	31-Mar-23	-

Aquaporin-Based Biomimetic RO membranes

JMS, 508 (2016) 94-103 JMS 494 (2015) 68 JMS, 423–424 (2012) 422

Influences of the Constituents in Proteoliposomes on Separation Performance of TFC PA Membranes

New Invention:

Bio-programmable membrane (BPM) without AQPs RO membranes

Comparison between

AQP-based (ABM) and Bio-programmable (BPM) membranes

Water Permeability and Salt Rejection

Summary of 4-inch **ABM** module RO performances

Summary of 4-inch BPM module RO performance (new method)

Module Name	Module size	Module Length (m)	Water Permeability ^a (LMH/bar)	Salt Rejection ^b
A-3200-1	4"	0.5	6.97	93.3%
A-3200-2	4″	0.5	7.74	91.5%
A-3200-3	4"	0.5	6.08	94.4%
A-7200-1	4"	1.0	6.26	93.1%
A-7200-4	4"	1.0	5.92	97.7%
A-7200-5	4"	1.0	7.30	96.2%
A-7200-6	4″	1.0	6.30	96.1%

Module Name	Module size	Module Length (m)	Water Permeability ^a (LMH/bar)	Salt Rejection ^b	
D-3200-14	4"	0.5	5.24	97.8%	
D-3200-15	4"	0.5	5.18	97.5%	
D-3200-16	4"	0.5	5.16	97.9%	
D-7200-2	4"	1.0	5.25	96.7%	
D-7200-3	4"	1.0	6.74	96.9%	
D-7200-4	4"	1.0	7.38	96.4%	
D-7200-5	4"	1.0	8.46	94.7%	

Note:

^a Tested using DI water under 2 bar

^b Tested using 500 ppm NaCl solution under 2 bar

Scaling up & translation

SMTC RO hollow fiber membrane:

water permeability: >7 LMH/bar, salt rejection: >97% (tested at 2 bar using 500 ppm)

Technology Readiness Level (TRL)

Membrane Production Line and Testing Skids

Commercial Level Spinning Machine

Automated Membrane Production Line

8-Channel Hollow-Fiber Spinning Line

Automatic Membrane Coating Machine

Automatic membrane coating system to conduct IP on 4- and 8-inch modules

Performance of Bio-programmable Membranes

(Target: To reach the PWP of 5 LMH/bar and NaCl rejection of 96%)

BPM-RO modules (4040)

Module ID	Module size	Module Length (m)	Water Permeability * (LMH/bar)	Salt Rejection**
D-3200-14	4"	0.5	5.24	97.8%
D-3200-15	4"	0.5	5.18	97.5%
D-3200-16	4"	0.5	5.16	97.9%
D-7200-2	4"	1.0	5.25	96.7%
D-7200-3	4"	1.0	6.74	96.9%
D-7200-4	4"	1.0	7.38	96.4%
D-7200-5	4"	1.0	8.46	94.7%
D-7200-6	4"	1.0	8.0	98.1%
D-7200-7	4"	1.0	10.1	96.1%

8-inch module

*Tested at 2 bar using DI water.

**Tested at 2 bar using 500 ppm NaCl solution.

Long-term Benchmark with Commercial Membranes

- Testing using real NEWater feed (MBR permeate collected from UPWRP)
- Batch testing (Fresh Newater feed was replaced on a weekly basis)
- · Chemical cleaning was conducted periodically to recover the water flux
- Two commercial modules were operated in parallel at 20 LMH for comparison
- Commercial modules was operated at 5~6 bar and 6~7 bar, respectively

Continuous Pilot Testing at UPWRP

- **On-going** testing using fresh NEWater feed (MBR permeate)
- Continuous testing
- Two ABM modules and two BPM modules were operated in parallel at 17 LMH for comparison for 12 days
- The operating water flux was further increased to 20 LMH from day 13.
- Actual running capacity 14 m³/d

Site Data on Energy Consumption

	PUB site	SMTC pilot testing
System pressure	8~10 bar	4.5 bar
Pumping power consumption	1 m ³ /day x 9 bar =10.42 W	1 m³/day x 4.5 bar =5.21 W
Specific energy consumption - 70% recovery - 90% pumping efficiency	10.42 W/(0.7 m³/day) = 0.356 kWh/m³ 0.356/0.9= 0.396 kWh/m³	5.21 W/(0.7 m³/day) = 0.178 kWh/m³ 0.178/0.9= 0.198 kWh/m³
Energy saving	0.198 kWh/m³	

The energy saving is around 0.2 kWh/m³

(~ 50% pumping energy saving)

Unique RO Hollow-Fiber Membrane

Better Water Through Nature

BPM-RO Hollow Fiber Membrane Commercialization

http://www.memp.tech/

Conclusions

- The growth of membrane technology is assured due to impending water scarcity.
- We have successfully developed novel RO hollow fiber membranes for water reuse and desalination.
- It is important to improve the TRL for technology translation.
- Commercialization of advanced membrane technology should be the ultimate goal of membrane research.

Acknowledgements

- Collaborators, research staff and PhD students of SMTC-NEWRI, NTU
- The research grants are supported by the Singapore National Research Foundation under its Environment and Water Research Program and administered by PUB, Singapore's National Water Agency (0804-IRIS-02, 0901-IRIS-20, 1102-IRIS-07-01, 1102-IRIS-02-03, 1301-IRIS-44, IAF-PP, 1601-CRPW-T49), MND
- We are also grateful to Singapore Economic Development Board for funding SMTC-NEWRI.

Contact information: rwang@ntu.edu.sg

Looking Forward to Collaboration

